The Classification of Circulant Weighing Matrices of Weight 16 and Odd Order

نویسنده

  • R. M. Adin
چکیده

In this paper we completely classify the circulant weighing matrices of weight 16 and odd order. It turns out that the order must be an odd multiple of either 21 or 31. Up to equivalence, there are two distinct matrices in CW (31, 16), one matrix in CW (21, 16) and another one in CW (63, 16) (not obtainable by Kronecker product from CW (21, 16)). The classification uses a multiplier existence theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of group invariant weighing matrices of small weight

We show that every weighing matrix of weight n invariant under a finite abelian group G can be generated from a subgroup H of G with |H| ≤ 2n−1. Furthermore, if n is an odd prime power and a proper circulant weighing matrix of weight n and order v exists, then v ≤ 2n−1. We also obtain a lower bound on the weight of group invariant matrices depending on the invariant factors of the underlying

متن کامل

Finiteness of circulant weighing matrices of fixed weight

Let n be any fixed positive integer. Every circulant weighing matrix of weight n arises from what we call an irreducible orthogonal family of weight n. We show that the number of irreducible orthogonal families of weight n is finite and thus obtain a finite algorithm for classifying all circulant weighing matrices of weight n. We also show that, for every odd prime power q, there are at most fi...

متن کامل

Some New Results on Circulant Weighing Matrices

We obtain a few structural theorems for circulant weighing matrices whose weight is the square of a prime number. Our results provide new schemes to search for these objects. We also establish the existence status of several previously open cases of circulant weighing matrices. More specifically we show their nonexistence for the parameter pairs (n, k) (here n is the order of the matrix and k i...

متن کامل

Signed Groups, Sequences, and the Asymptotic Existence of Hadamard Matrices

We use the newly developed theory of signed groups and some known sequences with zero autocorrelation to derive new results on the asymptotic existence of Hadamard matrices. New values of t are obtained such that, for any odd number p, there exists an Hadamard matrix of order 2tp. These include: t = 2N, where N is the number of nonzero digits in the binary expansion of p, and t = 4[-~ log2((p1)...

متن کامل

A class of mutually inequivalent circulant weighing matrices

It is well-known that for each prime power q and for each d ∈ 2N, there exists a circulant weighing matrix of order q d+1−1 q−1 and weight q . We extend this result to show that there exist φ(d+1) 2 inequivalent circulant weighing matrices of order q d+1−1 q−1 and weight q , where φ is the Euler totient function. Further, we obtain a bound on the magnitude of the values taken by the cross-corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999